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A Survey of Optimization byBuilding and Using Probabilistic ModelsMartin Pelikan, David E. Goldberg, and Fernando LoboIllinois Genetic Algorithms LaboratoryDepartment of General EngineeringUniversity of Illinois at Urbana-Champaignfpelikan,deg,lobog@illigal.ge.uiuc.eduAbstractThis paper summarizes the research on population-based probabilistic search algorithmsbased on modeling promising solutions by estimating their probability distribution and using theconstructed model to guide the further exploration of the search space. It settles the algorithmsin the �eld of genetic and evolutionary computation where they have been originated. Allmethods are classi�ed into a few classes according to the complexity of the class of modelsthey use. Algorithms from each of these classes are brie
y described and their strengths andweaknesses are discussed.1 IntroductionRecently, a number of evolutionary algorithms that guide the exploration of the search space bybuilding probabilistic models of promising solutions found so far have been proposed. These algo-rithms have shown to perform very well on a wide variety of problems. However, in spite of a fewattempts to do so, the �eld lacks a global overview of what has been done and where the researchin this area is heading to.The purpose of this paper is to review and describe basic principles of the recently proposedpopulation-based search algorithms that use probabilistic modeling of promising solutions to guidetheir search. It settles the algorithms in the context of genetic and evolutionary computation,classi�es the algorithms according to the complexity of the class of models they use, and discussesthe advantages and disadvantages of each of these classes.The next section brie
y introduces basic principles of genetic algorithms as our starting point.The paper continues by sequentially describing the classes of approaches classi�ed according tocomplexity of a used class of models from the least to the most general one. In Section 4 a fewapproaches that work with other than string representation of solutions are described. The paperis summarized and concluded in section 5.2 Genetic Algorithms, Problem Decomposition, and Building BlocksSimple genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989) are population-based searchalgorithms that guide the exploration of the search space by application of selection and geneticoperators of recombination/crossover and mutation. They are usually applied to problems wherethe solutions are represented or can be mapped onto �xed-length strings over a �nite alphabet.1
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The user de�nes the problem that the GA will attempt to solve by choosing the length and basealphabet of strings representing the solutions and de�ning a function that discriminates the stringsolutions according to their quality. This function is usually called �tness. For each string, the�tness function returns a real number quantifying its quality with respect to the solved problem.The higher the �tness, the better the solution.GAs start with a randomly generated population of solutions. From the current populationof solutions the better solutions are selected by the selection operator. The selected solutions areprocessed by applying recombination and mutation operators. Recombination combines multiple(usually two) solutions that have been selected together by exchanging some of their parts. Thereare various strategies to do this, e.g. one-point and uniform crossover. Mutation performs a slightperturbation to the resulting solutions. Created solutions replace some of the old ones and theprocess is repeated until the termination criteria given by the user are met.By selection, the search is biased to the high-quality solutions. New regions of the search spaceare explored by combining and mutating repeatedly selected promising solutions. By mutation,close neighborhood of the original solutions is explored like in a local hill-climbing. Recombi-nation brings up innovation by combining pieces of multiple promising solutions together. GAsshould therefore work very well for problems that can be somehow decomposed into subproblemsof bounded di�culty by solving and combining the solutions of which a global solution can be con-structed. Over-average solutions of these sub-problems are often called building blocks in GA liter-ature. Reproducing the building blocks by applying selection and preserving them from disruptionin combination with mixing them together is a very powerful principle to solve the decomposableproblems (Harik, Cant�u-Paz, Goldberg, & Miller, 1997; M�uhlenbein, Mahnig, & Rodriguez, 1998).However, �xed, problem-independent recombination operators often either break the buildingblocks frequently or do not mix them e�ectively. GAs work very well only for problems wherethe building blocks are located tightly in strings representing the solutions (Thierens, 1995). Onproblems with the building blocks spread all over the solutions, the simple GAs experience very poorperformance (Thierens, 1995). That is why there has been a growing interest in methods that learnthe structure of a problem on the 
y and use this information to ensure a proper mixing and growthof building blocks. One of the approaches is based on probabilistic modeling of promising solutionsto guide the further exploration of the search space instead of using crossover and mutation like inthe simple GAs.3 Evolutionary Algorithms Based on Probabilistic ModelingThe algorithms that use a probabilistic model of promising solutions to guide further exploration ofthe search space are called the estimation of distribution algorithms (EDAs) (M�uhlenbein & Paa�,1996). In EDAs better solutions are selected from an initially randomly generated population ofsolutions like in the simple GA. The true probability distribution of the selected set of solutionsis estimated. New solutions are generated according to this estimate. The new solutions are thenadded into the original population, replacing some of the old ones. The process is repeated untilthe termination criteria are met.The EDAs therefore do the same as the simple GAs except for that they replace genetic recom-bination and mutation operators by the following two steps:(1) A model (an estimate of the true distribution) of selected promising solutions is constructed.(2) New solutions are generated according to the constructed model.2
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Although EDAs process solutions in a di�erent way than the simple GAs, it has been theo-retically and empirically proven that the results of both can be very similar. For instance, thesimple GA with uniform crossover which randomly picks a value on each position from either of thetwo parents works asymptotically the same as the so-called univariate marginal distribution algo-rithm (M�uhlenbein & Paa�, 1996) that assumes that the variables are independent (M�uhlenbein,1997; Harik et al., 1998; Pelikan & M�uhlenbein, 1999).A distribution estimate can capture a building-block structure of a problem very accuratelyand ensure a very e�ective mixing and reproduction of building blocks. This results in a linearor subquadratic performance of EDAs on these problems (M�uhlenbein & Mahnig, 1998; Pelikanet al., 1998). In fact, with an accurate distribution estimate that captures a structure of thesolved problem the EDAs unlike the simple GAs perform the same as GA theory with mostly usedassumptions claims. However, estimation of the true distribution is far from a trivial task. Thereis a trade-o� between the accuracy and e�ciency of the estimate.The following sections describe three classes of EDAs that can be applied to problems withsolutions represented by �xed-length strings over a �nite alphabet. The algorithms are classi�edaccording to the complexity of the class of models they use. Starting with methods that assumethat the variables in a problem (string positions) are independent, through the ones that take intoaccount some pairwise interactions, to the methods that can accurately model even a very complexproblem structure with highly overlapping multivariate building blocks.An example model from each presented class of models will be shown. Models will be displayedas Bayesian networks, i.e. directed acyclic graphs with nodes corresponding to the variables in aproblem (string positions) and edges corresponding to probabilistic relationships covered by themodel. An edge between two nodes in a Bayesian network relates the two nodes so that the valueof the variable corresponding to the ending node of this edge depends on the value of the variablecorresponding to the starting node.3.1 No InteractionsThe simplest way to estimate the distribution of promising solutions is to assume that the variablesin a problem are independent and to look at the values of each variable regardless of the remainingsolutions (see �gure 1). The model of the selected promising solutions used to generate the newones contains a set of frequencies of all values on all string positions in the selected set. Thesefrequencies are used to guide further search by generating new string solutions position by positionaccording to the frequency values. In this fashion, building blocks of order one are reproduced andmixed very e�ciently. Algorithms based on this principle work very well on linear problems wherethe variables are not mutually interacting (M�uhlenbein, 1997; Harik et al., 1997).In the population-based incremental learning (PBIL) algorithm (Baluja, 1994) the solutionsare represented by binary strings of �xed length. The population of solutions is replaced with theso-called probability vector which is initially set to assign each value on each position with thesame probability 0:5. After generating a number of solutions the very best solutions are selectedand the probability vector is shifted towards the selected solutions by using Hebbian learningrule (Hertz, Krogh, & Palmer, 1991). The PBIL has been also referred to as the hill-climbing withlearning (HCwL) (Kvasnicka, Pelikan, & Pospichal, 1996) and the incremental univariate marginaldistribution algorithm (IUMDA) (M�uhlenbein, 1997) recently. Some analysis of the PBIL algorithmcan be found in Kvasnicka et al. (1996).In the univariate marginal distribution algorithm (UMDA) (M�uhlenbein & Paa�, 1996) the pop-ulation of solutions is processed. In each iteration the frequencies of values on each position in theselected set of promising solutions are computed and these are then used to generate new solutions3
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Figure 1: Graphical model with no interactions covered.which replace the old ones. The new solutions replace the old ones and the process is repeated untilthe termination criteria are met. Some theory of the UMDA can be found in M�uhlenbein (1997).The compact genetic algorithm (cGA) (Harik, Lobo, & Goldberg, 1998) replaces the populationwith a single probability vector like the PBIL. However, unlike the PBIL, it modi�es the probabilityvector so that there is direct correspondence between the population that is represented by theprobability vector and the probability vector itself. Instead of shifting the vector componentsproportionally to the distance from either 0 or 1, each component of the vector is updated byshifting its value by the contribution of a single individual to the total frequency assuming aparticular population size. By using this update rule, theory of simple genetic algorithms can bedirectly used in order to estimate the parameters and behavior of the cGA.All algorithms described in this section perform similarly. They work very well for linearproblems where they achieve linear or sub-quadratic performance, depending on the type of aproblem, and they fail on problems with strong interactions among variables. For more informationon the described algorithm as well as theoretical and empirical results of these see the cited papers.Algorithms that do not take into account any interdependencies of various bits (variables) failon problems where there are strong interactions among variables and where without taking intoaccount these the algorithms are mislead. That is why a lot of e�ort has been put in extendingmethods that use a simple model that does not cover any interactions to methods that could solvea more general class of problems as e�ciently as the simple PBIL, UMDA, or cGA can solve linearproblems.3.2 Pairwise InteractionsFirst algorithms that did not assume that the variables in a problem were independent couldcover some pairwise interactions. The mutual-information-maximizing input clustering (MIMIC)algorithm (De Bonet, Isbell, & Viola, 1997) uses a simple chain distribution (see �gure 2a) thatmaximizes the so-called mutual information of neighboring variables (string positions). In thisfashion the Kullback-Liebler divergence (Kullback & Leibler, 1951) between the chain and thecomplete joint distribution is minimized. However, to construct a chain (which is equivalent toordering the variables), MIMIC uses only a greedy search algorithm due to its e�ciency, andtherefore global optimality of the distribution is not guaranteed.Baluja and Davies (1997) use dependency trees (see �gure 2b) to model promising solutions.There are two major advantages of using trees instead of chains. Trees are more general thanchains because each chain is a tree. Moreover, by relaxing constraints of the model, in order to�nd the best model (according to a measure decomposable into terms of order two), a polynomial4
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maximal branching algorithm (Edmonds, 1967) that guarantees global optimality of the solutioncan be used. On the other hand, MIMIC uses only a greedy search because in order to learn chaindistributions, an NP-complete algorithm is needed. Similarly as in the PBIL, the population isreplaced by a probability vector which contains all pairwise probabilities.In the bivariate marginal distribution algorithm (BMDA) (Pelikan & M�uhlenbein, 1999) a forest(a set of mutually independent dependency trees, see �gure 2c) is used. This class of models iseven more general than the class of dependency trees because a single tree is in fact a set of onetree. As a measure used to determine which variables should be connected and which should not,Pearson's chi-square test (Marascuilo & McSweeney, 1977) is used. This measure is also used todiscriminate the remaining dependencies in order to construct the �nal model.

(a) MIMIC (b) Baluja&Davies (1997) (c) BMDAFigure 2: Graphical models with pairwise interactions covered.Pairwise models allow covering some interactions in a problem and are very easy to learn. Thealgorithms presented in this section reproduce and mix building blocks of order two very e�ciently,and therefore they work very well on linear and quadratic problems (De Bonet et al., 1997; Baluja& Davies, 1997; M�uhlenbein, 1997; Pelikan & M�uhlenbein, 1999; Bosman & Thierens, 1999). Thelatter two approaches can also solve 2D spin-glass problems very e�ciently (Pelikan & M�uhlenbein,1999).3.3 Multivariate InteractionsHowever, covering only some pairwise interactions has still shown to be insu�cient to solve prob-lems with multivariate or highly-overlapping building blocks(Pelikan & M�uhlenbein, 1999; Bosman& Thierens, 1999). That is why research in this area continued with more complex models. On onehand, using general models has brought powerful algorithms that are capable of solving decompos-able problems quickly, accurately, and reliably.On the other hand, using general models has also resulted in a necessity of using complexlearning algorithms that require signi�cant computational time and still do not guarantee globaloptimality of the resulting models. However, in spite of increased computational time spent bylearning the models, the number of evaluations of the optimized function is reduced signi�cantly.In this fashion the overal time complexity is reduced. Moreover, on many problems other algorithmssimply do not work. Without learning the structure of a problem, algorithms must be either giventhis information by an expert or they will simply be incapable of biasing the search in order tosolve complex decomposable problems with a reasonable computational cost.5
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Algorithms presented in this section use models that can cover multivariate interactions. In theextended compact genetic algorithm (ECGA) (Harik, 1999), the variables are divided into a numberof intact clusters which are manipulated as independent variables in the UMDA (see �gure 3a).Therefore, each cluster (building block) is taken as a whole and di�erent clusters are considered tobe mutually independent. To discriminate models, the ECGA uses a minimum description length(MDL) metric (Mitchell, 1997) which prefers models that allow higher compression of data (selectedset of promising solutions). The advantage of using the MDL metric is that it penalizes complexmodels when they are not needed and therefore the resulting models are not overly complex. To�nd a good model, a simple greedy algorithm is used. Starting with all variables separated, in eachiteration current groups of variables are merged so that the metric increases the most. If no moreimprovement is possible, the current model is used.Following from theory of the UMDA, for problems that are separable, i.e. decomposable intonon-overlapping subproblems of a bounded order, the ECGA with a good model should perform ina sub-quadratic time. A question is whether the ECGA �nds a good model and how much e�ortit takes. Moreover, many problems contain highly overlapping building blocks (e.g., 2D spin-glasssystems) which can not be accurately modeled by simply dividing the variables into distinct classes.This results in a poor performance of the ECGA on these problems.The factorized distribution algorithm (FDA) (M�uhlenbein, Mahnig, & Rodriguez, 1998) usesa factorized distribution as a �xed model throughout the whole computation. The FDA is notcapable of learning the structure of a problem on the 
y. The distribution and its factorizationare given by an expert. Distributions are allowed to contain marginal and conditional probabilitieswhich are updated according to the currently selected set of solutions. It has been theoreticallyproven that when the model is correct, the FDA solves decomposable problems quickly, reliably, andaccurately (M�uhlenbein, Mahnig, & Rodriguez, 1998). However, the FDA requires prior informationabout the problem in form of its decomposition and its factorization. Unfortunately, this is usuallynot available when solving real-world problems, and therefore the use of FDA is limited to problemswhere we can at least accurately approximate the structure of a problem.The Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, & Cant�u-Paz, 1998) uses amore general class of distributions than the ECGA. It incorporates methods for learning Bayesiannetworks (see �gure 3b) and uses these to model the promising solutions and generate the newones. In the BOA, after selecting promising solutions, a Bayesian network that models these isconstructed. The constructed network is then used to generate new solutions. As a measure ofquality of networks, any metric can be used, e.g. Bayesian-Dirichlet (BD) metric (Heckerman,Geiger, & Chickering, 1994), MDL metric, etc. In recently published experiments the BD scoringmetric has been used. The BD metric does not prefer simpler models to the more complex ones. Ituses accuracy of the encoded distribution as the only criterion. That is why the space of possiblemodels has been reduced by specifying a maximal order of interactions in a problem that are tobe taken into account. To construct the network with respect to a given metric, any algorithmthat searches over the domain of possible Bayesian networks can be used. In recent experiments, agreedy algorithm has been used due to its e�ciency.The BOA uses an equivalent class of models as the FDA; however, it does not require anyinformation about the problem on input. It is able to discover this information itself. Nevertheless,prior information can be incorporated and the ratio of prior information and information containedin the set of high-quality solutions found so far can be controlled by the user. Not only does theBOA �ll the gap between the FDA and uninformed search methods but also o�ers a method that ise�cient even without any prior information (Pelikan et al., 1998; Schwarz & Ocenasek, 1999; Pelikanet al., 1999) and still does not prohibit further improvement by using this. Another algorithm thatuses Bayesian networks to model promising solutions, called the estimation of Bayesian network6
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(a) ECGA (b) BOAFigure 3: Graphical models with multivariate interactions covered.algorithm (EBNA), has been later proposed by Etxeberria and Larra~naga (1999).The algorithms that use models capable of covering multivariate interactions achieve a verygood performance on a wide range of decomposable problems, e.g. 2D spin-glass systems (Pelikanet al., 1998; M�uhlenbein & Mahnig, 1998), graph partitioning (Schwarz & Ocenasek, 1999), commu-nication network optimization (Rothlauf, 1999), etc. However, problems which are decomposableinto terms of bounded order can still be very di�cult to solve. Overlapping the subproblems canmislead the algorithm until the right solution to a particular subproblem is found and sequentiallydistributed across the solutions (e.g., see F0�peak in M�uhlenbein and Mahnig (1998)). Withoutgenerating the initial population with the use of problem-speci�c information, building blocks ofsize proportional to size of a problem have to be used which results in an exponential performanceof the algorithms. This brings up a question on what are the problems we aim to solve by algo-rithms based on reproduction and mixing of building blocks that we have shortly discussed earlierin section 2. We do not attempt to solve all problems that can be decomposed into terms of abounded order. The problems we approach to solve are decomposable in a sense that they can besolved by approaching the problem on a level of solutions of lower order by combining the bestof which we can construct the optimal or a close-to-optimal solution. This is how we bias thesearch so that the total space explored by the algorithm substantially reduces by a couple ordersof magnitude and computationally hard problems can be solved quickly, accurately, and reliably.4 Beyond String Representation of SolutionsAll algorithms described above work on problems de�ned on �xed-length strings over a �nite alpha-bet. However, recently there have been a few attempts to go beyond this simple representation anddirectly tackle problems where the solutions are represented by vectors of real number or computerprograms without mapping the solutions on strings. All these approaches use simple models thatdo not cover any interactions in a problem.In the stochastic hill-climbing with learning by vectors of normal distributions (SHCLVND)(Rudlof & K�oppen, 1996) the solutions are represented by real-valued vectors. The population ofsolutions is replaced (and modeled) by a vector of mean values of Gaussian normal distribution�i for each optimized variable (see �gure 4a). The standard deviation � is stored globally andit is the same for all variables. After generating a number of new solutions, the mean values �iare shifted towards the best of the generated solutions and the standard deviation � is reduced to7
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(b) (Servet et al., 1998)Figure 4: Probabilistic models of real vectors of independent variables.make future exploration of the search space narrower. Various ways of modifying the � parameterhave been exploited in (Sebag & Ducoulombier, 1998). In another implementation of a real-codedPBIL (Servet, Trave-Massuyes, & Stern, 1997), for each variable an interval (ai; bi) and a numberzi are stored (see �gure 4b). The zi stands for a probability of a solution to be in the right half ofthe interval. It is initialized to 0:5. Each time new solutions are generated using the correspondingintervals, the best solutions are selected and the numbers zi are shifted towards them. When zifor a variable gets close to either 0 or 1, the interval is reduced to the corresponding half of it. In�gure 4b, each zi is mapped to the corresponding interval (ai; bi).In the probabilistic incremental program evolution (PIPE) algorithm (Salustowicz & Schmid-huber, 1997) computer programs or mathematical functions are evolved as like in genetic pro-gramming (Koza, 1992). However, pair-wise crossover and mutation are replaced by probabilisticmodeling of promising programs. Programs are represented by trees where each internal noderepresents a function/instruction and leaves represent either input variable or a constant. In thePIPE algorithm, probabilistic representation of the program trees is used. Probabilities of eachinstruction in each node in a maximal possible tree are used to model promising and generate newprograms (see �gure 5). Unused portions of the tree are simply cut before the evaluation of theprogram by a �tness function. Initially, the model is set so that the trees are generated at random.From the current population of programs the ones that perform the best are selected. These arethen used to update the probabilistic model. The process is repeated until the termination criteriaare met.5 Summary and ConclusionsRecently, the use of probabilistic modeling in genetic and evolutionary computation has becomevery popular. By combining various achievements of machine learning and genetic and evolutionarycomputation, e�cient algorithms for solving a broad class of problems have been constructed.The most recent algorithms are continuously proving their powerfulness and e�ciency, and o�er apromising approach to solving the problems that can be resolved by combining high-quality piecesof information of a bounded order together.In this paper, we have reviewed the algorithms that use probabilistic models of promising8
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